Post-frontal shallow convection observed in COMBLE: Cold-air Outbreaks in the Marine Boundary Layer Experiment Thanks to Christian Lackner, Branko Kosovic, Tim Juliano, Min Deng, Zach Lebo, Yishi Hu, Peng Wu, Mikhail Ovchinnikov # Preface - COMBLE describes the atmospheric conditions and aerosol, cloud, and precipitation characteristics in the marine boundary layer during high-latitude cold-air outbreaks - The marine CAO cloud regime is the product of surface fluxes, BL mixing & entrainment, aerosol, cloud and precipitation processes, and mesoscale circulations - COMBLE provides a powerful modeling test bed for improving the representation of mixed-phase cloud processes in largeeddy simulations and large-scale models - DL - CEIL - MPL - MWR-2C - LDIS - TSI - ECORE/SEBS - AWS - BBSS - MRR (U. Cologne) ## Identification of marine Cold-Air Outbreaks Dec 19 - Identification based on the following environmental conditions: - MCAO-index: $M = \theta_{SST} \theta_{850hPa} > 0 \text{ K}$ - Wind speed: $|\vec{u}| > 10 \text{ kt}$ - Wind direction must be onshore: - Between 250° and 30° at Andenes - Between 270° and 110° at Bear Island - SST is taken ~10 km off the coast and ranges between 5 – 8 °C at Andenes during COMBLE - Three hour running-means are applied to the atmospheric conditions; CAO events and gaps between CAO events shorter than 3 hours are filtered out #### Composite vertical cloud structure Frequency by altitude display of KAZR reflectivity and Doppler velocity at Andenes. From left to right, the red lines are the 10th percentile, the mean, and the 90th percentile # Example 1: 28-29 Mar 2020 Look for the poster by Tim Juliano et al on this case, showing 1 km WRF simulations # Example 2: 23-24 Feb 2020 The 40-day global SCREAM simulation produces a similar MCAO (see poster by Xue Zheng and YunYan Zhang) # Example 3: 13 Mar 2020 #### conditions at Andenes This case is analyzed in the poster by Peng Wu and Mikhail Ovchinnikov | start | end | duration
(hrs) | mean M
(K) | mean wind
speed (m/s) | mean wind dir
(°) | mean T
(°) | description | |--------------|--------------|-------------------|---------------|--------------------------|----------------------|---------------|---| | 20/03/27 23Z | 20/03/29 12Z | 37 | 6.6 | 8.0 | 314 | 0.5 | long-lived, trajectories via Fram Strait, echo tops 3-6 km | | 20/03/12 18Z | 20/03/14 02Z | 32 | 7.8 | 7.6 | 336 | -0.9 | extreme M, trajectories via Fram Strait, echo tops 4-5 km | | 20/02/22 21Z | 20/02/24 13Z | 40 | 2.3 | 7.6 | 297 | 2.4 | complex trajectory, polar low over ANX, echo tops shallow (~2 km) or deep (~6 km) |